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Improvement of a high-resolution oceanic circulation model using Optimal Interpolation of
Lagrangian drifters in the Southeast Bay of Biscay for assessing the turbulent dispersion
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BACKGROUND METHOD: OPTIMAL INTERPOLATION

Despite a certain progress achieved recently in simulating the large-scale and mesoscale
variability of oceanic currents, reconstructing small scale features of circulation, particularly the
sub-mesoscale (from 1 to 10 km), remains challenging. Sub-mesoscale motions play a key role in
transport and dispersion of particulate matter at sea. In the Southeast Bay of Biscay, it has been
pointed to have an important role in the aggregation of marine litter along frontal lines that are

Linear combination of the weighted differences between the modeled and
observed velocities (Gandin, 1963):
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visible to the naked eye: “marine litter windrows” (Ruiz et al., 2020). A method capable of I ' )\ ' l
improving the coastal circulation and dispersion from model outputs has been applied to this initial model  Dynamic interpolator Combination Interpolated differences
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MATERIALS: STUDY AREA AND DATA
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METHOD: LAGRANGIAN ERROR
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METHOD: LAGRANGIAN ERROR - RESULTS: TWO-PARTICLES STATISTICS
I l Finite Size Lyapunov Exponent (FSLE)
Deployment of 1500 virtual particles seeded around the deployment zone at t;| Quantification of the rate of divergence or convergence of close trajectories (Berti et al., 2011). In(r)
during the 40-hours of each survey. Particles are advected using OpenDrift Estimated by measuring the time 7, averaged over all particle pairs, needed to separate particle  A(8) =
software in the initial and optimized model fields. Separation distance: 500m. in a pair from a distance &, to a distance 8= r &, with r = 1. Maximum of FSLE identify the (t)

Lagrangian Coherent Structures (d’Ovidio et al., 2004, Hernandez-Carrasco et al., 2011).

RESULTS: ONE-PARTICLE STATISTICS
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CONCLUSIONS & FUTURE WORK

- The optimization method is efficient using drifters as observations and
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enables 52% reduction of Lagrangian error during BOBLITO.1 and 58% during Longltude (°E) Longitude (°E)
BOBLITO.2.
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